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8-Oxo-7,8-dihydro-2′deoxyguanosine (pKa1 ) 8.6, pKa2 )
11.7),3 frequently called 8-hydroxy-2′deoxyguanosine (≡ 8-O-
HdG), is probably the most important and best-documented
product of “oxidative stress”4-7 in biological systems. Its
concentration in the cellular DNA is, in fact, a quantitative
measure of the degree of damage that an organism has
undergone.8-12 Unless 8-OHdG is built by nature into DNA on
purpose, it is the product of oxidativedecompositionof 2′deoxy-
guanosine (dG). A large number of oxidants/oxidizing environ-
ments leading from dG to its 8-hydroxy derivative have been
identified, some of the more important ones being singlet
oxygen,13,14 the OH radical (produced by ionizing radiation or
transition metal catalyzed decomposition of hydroperoxides),15,16

andphoto-oxidation17 (which is believed18-21 to proceed via the
guanosine radical cation).

8-OHdG is a mutagenic lesion involved in carcinogenesis and
aging,8,22 but as suchit doesnot lead to DNA strand breakage.
However, it is much more easily oxidized than its natural “parent”,
dG,14,21,23-26 and its oxidation productis a candidate for (piperi-
dine-induced) strand breakage.27-29 In view of this pronounced
sensitivity, it is necessary to fully understand the radical chemistry

of 8-OHdG and particularly the one-electron redox properties of
this physiologically important molecule. With this aim, the pulse
radiolysis method with optical and conductance detection was
applied. 8-OHdG30 in 0.01 to 1 mM aqueous solutions was one-
electron-oxidized with the radiation-chemically producedinor-
ganic radicals Br2•-, N3

•, Tl2+, or SO4
•- (Table 1). From the pH-

dependent absorption spectra31 (Figure 1, insets d, e) are derived
the (de)protonation equilibria (Scheme 1)32 with pKa1 ) 6.6 and
pKa2 ) 12.3. These values are higher than those for dGuo (3.9
and 10.8)33 which reflects the increase in electron density due to
the oxygen at C8.

The same conclusion can be drawn from the reduction potential
(0.74 V/NHE, see later) of 8-OHdG(-H)• as compared to the
1.29 V/NHE34 of G(-H)•.

8-OHdG can also be oxidized with variousorganic radicals
(Table 1), such as tyrosyl or tryptophyl or enolether radical
cations,35 peroxyls, and even with the deprotonated radical cation
of 2′deoxyguanosine-5′-monophosphate or that of guanosine,
G(-H)•. The protocol for this reaction is shown in Figure 1.

The initial spectrum (Figure 1,O) is that of G(-H)• (produced
via SO4

•- from the excess guanosine present). Due to the presence
of 8-OHdG, G(-H)• disappears (inset b) to give rise to 8-OHdG-
(-H)• (seeb and inset a). The rate constant for the oxidation of
8-OHdG by G(-H)• (obtained via inset c) is 4.6× 108 M-1 s-1

at pH 7.
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Figure 1. Oxidation of 8-OHdG by G(-H)• at pH 7. The pulse (200 ns
3 MeV electrons)-irradiated solution contained 2 mM guanosine, 0.6 mM
8-OHdG, 20 mM K2S2O8 and 0.5 Mtert-butyl alcohol. Absorption spectra
(G(radical)≡ 3.3) of G(-H)•, observed at 1.5µs: O, and of 8-OHdG-
(-H)•, observed at 15µs after the pulse:b. In insets d and e are shown
the determinations of the pKa-values of 8-OHdG(-H)• using, however,
N3

• to oxidize 8-OHdG.
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To better understand the role in DNA of 8-OHdG, it is
necessary to know its redox potential. From the fact that the G
radical is able to oxidize 8-OHdG (Figure 1, Table 1) and also
from the literature14,23,24,26it is evident that 8-OHdG is more easily
oxidized than G. It was found that the compounds tryptophan
(E3 ) 1.2 V/NHE),36,41 3,5-dihydroxyanisole (E7 ) 0.84 V),37

4-methyl-2-methoxyphenol (E7 ) 0.68 V),38 1,2,4-trimethoxy-
benzene (E ) 1.14 V),39 or 1,2,4,5-tetramethoxybenzene (0.889
V)40 are able to establish an electron transferequilibrium with
8-OHdG radical. From the measured equilibrium constantsKeq

for electron transfer between the systems and applying the Nernst
equation to convertKeq into ∆E,42 the reduction potentialE of
the one-electron-oxidized 8-OHdG radical was determined at
different pH values (Table 1). The pH-dependence ofE is shown
in Figure 2, the (averaged) value at pH 7 being 0.74 V/NHE.43

The difference in reduction potential at pH 7 between G(-H)•

(1.29 V) and 8-OHdG(-H)• (0.74 V) of 0.55 V44,45 corresponds
to a driving force for oxidation of 8-OHdG by G(-H)• of 13

kcal/mol. It is thus clear that not the guanine but the 8-OH-guanine
moiety is theultimatesink of oxidizing equivalents in DNA.46,47

The presence of 8-OHdG in DNA makes this macromolecule
vulnerable to oxidation from “environmental” radicals such as
peroxyl (E7 ) 1.05 V),48,49and even amino acid radicals such as
tyrosyl (0.93 V),50 tryptophyl (1.01-1.08 V)36,41or to thiyl radicals
(0.75 V),51 as they may exist in the histone proteins covering the
DNA. By functioning as the ultimate “positive hole” sink, the
oxidation of DNA is funneled into this (desired?) direction. By
serving this function, 8OH-dGprotects the other basesfrom
oxidation.46

Supporting Information Available: The spectra of one-electron-
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Table 1. Rate and Equilibrium Constantsa for Oxidation of 8-OHdG in Aqueous Solution at 20-25 °C

oxidizing radical//
λobservation/nm pH

kox/
109 M-1 s-1

redox standard Sb

S•+8-OHdGy\z
kf

kr

S+8-OHdG•
pH ES/VNHE kf

b kr Keq
c

EpH/VNHE

8-OHdG

Br2
•-/325 6.9 1.1 tryptophan 3.0 1.19d 1.2× 109 3025 0.99

N3
•/330 7.6 5.6

Tl2+/325 3.2 1.6 3,5-dihydroxyanisole 7.5 0.84e 1.2× 107 2 × 105 58 0.74
SO4

•-/330, 390 7.0 4.3 3,5-dihydroxyanisole 13.2 0.46e 4.4× 108 3.5× 106 164 0.33
CH3O2

•/320 7.0 0.83 4-methyl-2-methoxyphenol 7.0 0.68f 1.3× 106 0.1 0.74
CCl3O2

•/370 g 0.38
TyrO•/480 7.0 ≈0.02 1,2,4-trimethoxybenzene 3.0 1.14h 2.6× 109 2.6× 107 112 1.02
Trp•+/420, 565 3.0 1.2
Trp(-H)•/400 7.0 0.017 1,2,4,5-tetramethoxybenzene 6.0 0.889i 1.8× 107 5.4× 105 25.9 0.81
dG(-H)•/450, 540 7.0 0.46
G5′-MP(-H)•/330, 550 5.0 0.84
cis-MeOCHdCHOMe•+/330 7.7 0.83
2,3-Me2-4,5-DHF•+ j/400 7.5 0.56

a Error limits (10%. b The forward reaction (kf) is between the one-electron-oxidized redox standard and 8-OHdG. The redox standards were
oxidized with Br2•-. c The constant is from theconcentrationsat equilibrium and, where possible, from thekineticallymeasured values (fromkf and
kr). d From ref 36.e From ref 37.f From ref 38.g Solvent 65% (v/v) water, 25% 2-propanol, 10% acetone, saturated with CCl4. h Electrochemically
determined. From ref 39.i From ref 40.j 2,3-Dimethyl-4,5-dihydrofurane.

Scheme 1

Figure 2. Dependence of the reduction potential E/NHE of one-electron
oxidized 8-OHdG on pH. The solid line is a computer fit to the formula
given in ref 43. Redox standards used:b tryptophan, ] 1,2,4-
trimethoxybenzene,4 1,2,4,5-tetramethoxybenzene,0 4-methyl-2-meth-
oxyphenol,2 3,5-dihydroxyanisole.
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